Abstract

In this study, we investigated the effects of hinokitiol, a small-molecule natural compound, against neuronal ferroptosis after traumatic brain injury (TBI). A controlled cortical impact (CCI) mouse model and excess glutamate-treated HT-22 cells were used to study the effects of hinokitiol on TBI. Hinokitiol mitigated TBI brain tissue lesions and significantly improved neurological function. Neuron loss and iron deposition were ameliorated after hinokitiol administration. Hinokitiol alleviated excessive glutamate-induced intracellular reactive oxygen species (ROS), lipid peroxidation, and Fe2+ accumulation in HT-22. Mechanistically, hinokitiol upregulated heme oxygenase-1 (HO-1) expression, promoted nuclear factor-erythroid factor 2-related factor 2 (Nrf2) nuclear translocation, and inhibited the activation of microglia and astrocyte after TBI. These results suggest that hinokitiol has neuroprotective effects on rescuing cells from TBI-induced neuronal ferroptosis. In summary, hinokitiol is a potential therapeutic candidate for TBI by activating the Nrf2/Keap1/HO-1 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.