Abstract

Amyloid-β (Aβ) is known to exert cytotoxic effects by inducing mitochondrial dysfunction. Additionally, the mitochondrial voltage-dependent anion channel 1 (VDAC1), which is involved in the release of apoptotic proteins with possible relevance in Alzheimer's disease (AD) neuropathology, plays an important role in maintaining mitochondrial function and integrity. However, the application of therapeutic drugs, especially natural products in (AD) therapy via VDAC1-regulated mitochondrial apoptotic pathway has not aroused extensive attention. In the present study, we investigated neuroprotective effects of hesperidin, a bioactive flavonoid compound, on Aβ25-35-induced neurotoxicity in PC12 cells and also examined the potential cellular signalling mechanism. Our results showed that treatment with hesperidin significantly inhibited Aβ25-35-induced apoptosis by reversing Aβ-induced mitochondrial dysfunction, including the mitochondrial permeability transition pore opening, intracellular free calcium increase and reactive oxygen species production. Further study indicated that hesperidin can decrease the level ofVDAC1 phosphorylation through inhibiting the activity of the glycogen synthase kinase-3b and increase the level of hexokinaseI in mitochondria, preventing release of cytochrome c from mitochondria [corrected]. Furthermore, hesperidin inhibited mitochondria-dependent downstream caspase-mediated apoptotic pathway, such as that involving caspase-9 and caspase-3. These results demonstrate that hesperidin can protect Aβ-induced neurotoxicity via VDAC1-regulated mitochondrial apoptotic pathway, and they raise the possibility that hesperidin could be developed into a clinically valuable treatment for AD and other neuronal degenerative diseases associated with mitochondrial dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.