Abstract

The injurious effects of reactive oxygen species on osteoblasts and the potential protective role played by green tea polyphenols (GtPP) were investigated using primarily cultured rat calvarial osteoblasts. Oxidative stress was induced in cultured osteoblasts, either by adding 100 mmol/L H2O2 or by the action of 40 U/L xanthine oxidase (XO) in the presence of xanthine (250 micromol/L). After incubation, the cellular viability, function and morphology were evaluated. Both treatments produced a significant reduction in osteoblast viability, as assessed by a two-colored fluorescence staining method combined with flow cytometric analysis and MTT assay. A significant reduction in the alkaline phosphatase activity was observed after H2O2 addition, whereas XO did not have the same effect. On the microscopic observations, the morphological changes and intracellular ultrastructural damages were remarkably induced by both treatments. The H2O2-induced alterations were prevented by pre-incubating the osteoblasts with 200 microg/ml GtPP for 1 h. When the oxidative stress was induced by XO, the cellular viability and morphology was also maintained at the same polyphenol concentration. These results demonstrate that GtPP can act as a biological antioxidant in a cell culture experimental model and protect cells from oxidative stress-induced toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.