Abstract

PurposeGrowth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates growth hormone release from the anterior pituitary gland. GHRH antagonists (GHRHAnt) are anticancer agents, which also exert robust anti-inflammatory activities in malignancies. GHRHAnt exhibit anti-oxidative and anti-inflammatory effects in vascular endothelial cells, indicating their potential use against disorders related to barrier dysfunction (e.g. sepsis). Herein, we aim to investigate the effects of GHRHAnt against lung endothelial hyperpermeability.MethodsThe in vitro effects of GHRHAnt in H2O2-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Electric cell-substrate impedance sensing (ECIS) was utilized to measure transendothelial resistance, an indicator of barrier function.ResultsOur results demonstrate that GHRHAnt protect against H2O2-induced endothelial barrier disruption via P53 and cofilin modulation. Both proteins are crucial modulators of vascular integrity. Moreover, GHRHAnt prevent H2O2 – induced decrease in transendothelial resistance.ConclusionsGHRHAnt represent a promising therapeutic intervention towards diseases related to lung endothelial hyperpermeability, such as acute respiratory distress syndrome - related or not to COVID-19 - and sepsis. Targeted medicine for those potentially lethal disorders does not exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call