Abstract

Fucoxanthin is a carotenoid that is rich in some seaweed. Although fucoxanthin has been reported to possess radical-scavenging activities in vitro, little is known whether it may protect against iron-induced oxidative stress in cultured cells. In this study, we examined the protection of fucoxanthin against oxidative damage in BNL CL.2 cells induced by ferric nitrilotriacetate (Fe-NTA). The data show that incubation of BNL CL.2 cells with Fe-NTA for 30min significantly decreased cell proliferation, whereas pretreatment with fucoxanthin (1–20μΜ) for 24h significantly recovered cell proliferation in a dose-dependent manner. In addition, fucoxanthin pretreatment significantly decreased intracellular reactive oxygen species (ROS) and DNA damage in BNL CL.2 cells incubated with Fe-NTA for 30min. Moreover, fucoxanthin markedly decreased the level of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl contents in BNL CL.2 cells induced by Fe-NTA. By contrast, fucoxanthin significantly increased the levels of GSH in a concentration-dependent manner. These results demonstrate that fucoxanthin at 1–20μΜ effectively prevents cytotoxicity in BNL CL.2 cells treated with Fe-NTA, and that the protective effect is likely associated with decreased intracellular ROS, TBARS, protein carbonyl contents and increased GSH levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.