Abstract

Neonatal hypoxic-ischemic (HI) brain injury remains a devastating clinical disease associated with high mortality and lifetime disability. Neonatal HI injury damages the architecture of neurovascular unit (NVU), thus, therapy targeting the NVU may provide effective neuroprotection against HI. This study was designed to investigate whether fibroblast growth factor 10 (FGF10) protected the NVU against HI and afforded observable neuroprotection in a rat model of neonatal HI brain injury. The results showed that FGF10 treatment significantly reduced brain damage post HI, characterized by reduction in brain infarct volume and tissue loss. Further interesting findings showed that FGF10 treatment exerted neuroprotective effects on HI brain injury in neonate rats through protecting the NVU against HI, evidenced by inhibition of neuronal cell apoptosis, suppression of gliosis, and amelioration of blood-brain barrier disruption. Collectively, our study indicates that FGF10 treatment exhibits great potential for protecting NVU against HI and attenuates neonatal brain injury, suggesting a potential novel therapeutic agent to this disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.