Abstract

It is known that biological relatives of long-lived individuals demonstrate lower mortality and longer life span compared to relatives of shorter-lived individuals, and at least part of this advantage is likely to be genetic. Less information, however, is available about effects of familial longevity on age-specific mortality trajectories. We compared mortality patterns after age 50 years for 10 045 siblings of US centenarians and 12 308 siblings of shorter-lived individuals (died at age 65 years). Similar comparisons were made for sons and daughters of longer-lived parents (both parents lived 80 years and more) and shorter-lived parents (both parents lived less than 80 years) within each group of siblings. Although relatives of longer-lived individuals have lower mortality at younger ages compared to relatives of shorter-lived individuals, this mortality advantage practically disappears by age 100 years. To validate this observation further, we analyzed the survival of 3 408 US centenarians born in 1890-1897 with known information on maternal and paternal life span. We found using the Cox proportional hazards model that both maternal and paternal longevity (life span 80+ years) is not significantly associated with survival after age 100 years. The results are compatible with the predictions of reliability theory of aging suggesting higher initial levels of system redundancy (reserves) in individuals with protective familial/genetic background and hence lower initial mortality. Heterogeneity hypothesis is another possible explanation for the observed phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call