Abstract

The central nervous system reserves high concentrations of free Zn(2+) in certain excitatory synaptic vesicles. In pathological conditions such as transient cerebral ischemia, traumatic brain injury, and kainic acid (KA)-induced seizure, free Zn(2+) is released in excess at synapses, which causes neuronal and glial death. We report here that glutathione (GSH) can be used as an effective means for protection of neural cells from Zn(2+)-induced cell death in vitro and in vivo. Chronic treatment with 35 microM Zn(2+) led to death of primary cortical neurons and primary astrocytes. The Zn(2+) toxicity of cortical neurons was partially protected by 1 mM of GSH, whereas the Zn(2+) toxicity of primary astrocyte cultures was blocked completely by 100 microM of GSH. To evaluate the beneficial effects of GSH in vivo, an excitotoxin-induced neural cell death model was established by intracerebroventricular (i.c.v.) injection of 0.94 nmol (0.2 microg) KA, which produced selective neuronal death, especially in CA1 and CA3 hippocampal regions. The i.c.v. co-injection of 200 pmol of GSH significantly attenuated KA-induced neuronal cell death and reactive gliosis in hippocampus. The results of this study suggest the contribution of Zn(2+) in the excitotoxin-induced neural cell death model and a potential value of GSH as a therapeutic means against Zn(2+)-induced pathogenesis in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.