Abstract

In recent years, the neuroprotective potential of mesenchymal stroma-/stem-like cells (MSC) as well as of MSC-derived extracellular vesicles (EVs) like exosomes has been intensively explored. This included preclinical evaluation regarding treatment of neurodegenerative disorders such as the fatal motor neuron disease amyotrophic Lateral Sclerosis (ALS). Several studies have reported that MSC-derived exosomes can stimulate tissue regeneration and reduce inflammation. MSC release EVs and trophic factors and thereby modify cell-to-cell communication. These cell-free products may protect degenerating motor neurons (MNs) and represent a potential therapeutic approach for ALS. In the present study we investigated the effects of exosomes derived from a permanently growing MSC line on both, wild type and ALS (SOD1G93A transgenic) primary motor neurons. Following application in a normal and stressed environment we could demonstrate beneficial effects of MSC exosomes on neurite growth and morphology indicating the potential for further preclinical evaluation and clinical therapeutic development. Investigation of gene expression profiles detected transcripts of several antioxidant and anti-inflammatory genes in MSC exosomes. Characterization of their microRNA (miRNA) content revealed miRNAs capable of regulating antioxidant and anti-apoptotic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.