Abstract
Within the last few years, there has been a growing interest in the neuroprotective effects of estrogen and the possible beneficial effects of estrogen in neurodegenerative diseases such as stroke, Alzheimer disease, and Parkinson disease. Here, we review the progress in this field, with a particular focus upon estrogen-induced protection from stroke-induced ischemic damage. The important issue of whether clinically relevant selective estrogen receptor modulators (SERMs) such as tamoxifen and raloxifene and estrogen replacement therapy can exert neuroprotection is also addressed. Although the mechanism of estrogen and SERM neuroprotection is not clearly resolved, we summarize the leading possibilities, including 1) a genomic estrogen receptor-mediated pathway that involves gene transcription, 2) a nongenomic signaling pathway involving activation of cell signalers such as mitogen-activated protein kinases and/or phosphatidylinositol-3-kinase /protein kinase B, and 3) a nonreceptor antioxidant free-radical scavenging pathway that is primarily observed with pharmacological doses of estrogen. The role of other potential mediatory factors such as growth factors and the possibility of an astrocyte role in neuroprotection is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.