Abstract

Purpose There has been increased interest in phytochemical antioxidants to prevent protein damage and aggregate formation in cataract treatment. In this study, the protective effect of different doses of Rb1 (GRb1), one of the ginsenosides of Panax Ginseng, in the experimental cataract model formed in chick embryos was investigated. Methods Five different experimental groups were formed with 100 SPF fertilized eggs: Control (0.9% NaCl to physiological saline), hydrocortisone hemisuccinate sodium (HC), low dose (HC + L-GRb1 (1 mg/kg)), medium dose (HC+). M-GRb1 (2.5 mg/kg)), and high dose (HC + H-GRb1 (5 mg/kg)). All solutions were given to air sack at 15 days of incubation. On the 17th day, the bulbous oculi of the chick embryos were dissected. Cataract formations of the lenses, glutathione (GSH), malondialdehyde (MDA), total antioxidant (TAS), total oxidant (TOS) levels, Caspase-3 H-score, and TUNEL index were determined. In addition, crystalline alpha A (CRYAA) gene expression was evaluated. Results Cataracts were observed in the control, HC, HC + L-GRb1, HC + M-GRb1, and HC + H-GRb1 groups with a frequency of 0%, 100%, 75%, 56.25%, and 100%, respectively. There were statistically significant differences between the control and HC groups in terms of TAS, TOS, MDA, GSH, Caspase-3 H-score, and TUNEL index (p < .05). When the therapeutic effect of the GRb1 groups was evaluated, the HC group showed significant differences with the HC + L-GRb1 and HC + M-GRb1 groups in almost all parameters (p < .05), while there was no statistical difference with the HC + H-GRb1 group (p > .05). In addition, gene expression levels differed between the groups, although not statistically significant (p > .05). Conclusion 1 mg/kg and 2.5 mg/kg GRb1 applications show therapeutic properties on the HC-induced cataract model. This effect is more pronounced at 2.5 mg/kg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.