Abstract
This study explores the possibility for protection by curcumin during the molecular and structural changes of human serum albumin (HSA) exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS-PAGE study unfolded the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy indicated significant decrease in the alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements, when lifetime decay was significantly reduced from 6.35ns to 0.37ns. Hydrophobic study showed the effectiveness of curcumin for protection at low dose of gamma irradiated HSA samples. We integrated these observations to investigate protein aggregation under increasing gamma radiation and estimated the same in presence of curcumin. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the characteristic properties to a higher extent indicating stabilization of molecular structure of HSA by curcumin. A model for curcumin based protection has been proposed utilizing ThT assay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.