Abstract

BackgroundAureobasidium pullulans (A. pullulans) has a wide range of applications. Ultraviolet (UV) rays from the sun can cause skin photoaging. In order to explore the protective effect and application potential of A. pullulans lysate on UV-damaged human skin fibroblasts (HSF) and HaCaT Cells, this study investigates the anti-aging and anti-inflammatory effects of A. pullulans lysate as well as the mechanism of anti-oxidative stress at the cellular and molecular levels through cytotoxicity experiments, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT-qPCR).ResultsThe experimental results have shown that the A. pullulans lysate can effectively reduce the loss of extracellular matrix components (EMC), such as collagen and hyaluronic acid (HA). It is also capable of scavenging excess reactive oxygen species (ROS) from the body, thereby increasing the activity of catalase, decreasing the overexpression of intracellular matrix metalloproteinases (MMPs), enhancing the gene expression of metalloproteinase inhibitors (TIMPs), and decreasing the level of inflammatory factors, reducing UV-induced apoptosis of HaCaT cells. Meanwhile, oxidative stress homeostasis is also regulated through the Nrf2/Keap1 and MAPK signaling pathways.ConclusionsThis study shows that the A. pullulans lysate has the potential to resist photoaging.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.