Abstract

Oxidative stress plays a pivotal role in various neurological disorders, encompassing both neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and mood disorders like depression. The balance between the generation of reactive oxygen species (ROS) and the cell’s antioxidant defenses, when disrupted, can lead to neuronal damage and neurologic dysfunction. In this study, we focused on the pathogenic role of oxidative stress in various neurologic disease models in vitro and investigated the neuroprotective capabilities of some novel bicyclic γ-butyrolactone compounds, with particular emphasis on the compound designated as ’bd’. Our investigation leveraged the HT22 and SH-SY5Y cells to model oxidative stress induced by H2O2 or corticosterone (CORT), common triggers of neuronal damage in neurodegenerative and mood disorders. We discovered that compound bd robustly reduced ROS production and suppressed neuronal apoptosis, suggesting its potential in treating a wider array of neurological conditions influenced by oxidative stress. In conclusion, our research underscores the importance of addressing oxidative stress in the context of diverse neurological disorders. The identification of compound bd as a neuroprotective agent with potential efficacy against ROS-induced apoptosis in neural cells opens new horizons for therapeutic development, offering hope for patients suffering from neurodegenerative diseases, depression, and other stress-related neurological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.