Abstract

The aim of the present study was to evaluate the neuroprotective effect of the 5-hydroxytryptamine1A (5-HT1A) agonists, CM 57493 and urapidil, in vivo and in vitro, respectively. In vivo permanent occlusion of the middle cerebral artery (MCA) was performed in male Wistar rats. Forty-eight hours after electrocoagulation of the MCA the infarct volume was determined. Pretreatment of the rat with the 5-HT1A agonist urapidil significantly reduced infarct development. The neuroprotective effect of the agent was restricted to the cortical area; the striatal damage was not influenced. As the stimulation of the 5-HT1A receptor by serotonin is supposed to induce inhibitory, hyperpolarizing effects by opening of a Ca(2+)-independent neuronal K+ ionophore, the efficacy of agonistic drugs directly on the neuron was investigated in vitro. Cyanide-induced cytotoxic hypoxia as well as glutamate-induced excitotoxicity were performed using primary neuronal cell cultures from chick embryo cerebral hemispheres. Treatment with the 5-HT1A agonists urapidil and CM 57493 significantly increased protein content of hypoxic cultures. CM 57493 added to the culture medium (1-10 microM) during and up to 24 h after glutamate exposure ameliorated viability of the neurons. The results demonstrate neuroprotective potency of the 5-HT1A agonists, urapidil and CM 57493, when applied under hypoxic, excitotoxic and ischemic conditions in vivo and in vitro, respectively. Both, presynaptically induced inhibition of glutamate release as well as postsynaptically induced inhibition of neuronal excitability could be discussed as possible mechanisms of action of the 5-HT1A receptor agonism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.