Abstract

Huntington's disease (HD) is a polyglutamine-expansion neurodegenerative disorder caused by increased number of CAG repeats in the HTT gene, encoding for the huntingtin protein. The mutation is linked to several intracellular mechanisms, including oxidative stress. Flavones are compounds with a protective role in neurodegenerative pathologies. In the present study we analyzed the protective effect of luteolin (Lut, 3′,4′,5,7-tetrahydroxyflavone) and four luteolin derivatives bearing 3-alkyl chains of 1, 4, 6 and 10 carbons (Lut-C1, Lut-C4, Lut-C6, Lut-C10) in striatal cells derived from HD knock-in mice expressing mutant Htt (STHdhQ111/Q111) versus wild-type striatal cells (STHdhQ7/Q7). HD cells showed increased caspase-3-like activity and intracellular reactive oxygen species (ROS), which were significantly decreased following treatment with Lut-C4 and Lut-C6 under concentrations that enhanced cell viability. Interestingly, Lut-C4 and Lut-C6 rose the nuclear levels of phospho(Ser40)-nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and Nrf2/ARE transcriptional activity. Concordantly with increased Nrf2/ARE transcription, Lut-C6 enhanced superoxide dismutase 1 (SOD1) mRNA and SOD activity and glutamate-cysteine ligase catalytic subunit (GCLc) mRNA and protein levels, while Lut-C4 induced mRNA levels of GCLc only in mutant striatal cells. Data suggest that Lut-C6 luteolin derivative (in particular) might be relevant for the development of antioxidant strategies in HD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call