Abstract

The cardiac mitochondrial damage and cardiac hypertrophy pathways are intimately associated with the pathology of myocardial infarction (MI). The protective effects of β-caryophyllene on mitochondrial damage and cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats were investigated. Isoproterenol (100 mg/kg body weight) was administered to induce MI. The ST-segment, QT interval, and T wave were widened, and the QRS complex and P wave were shortened in the electrocardiogram (ECG) and the serum cardiac diagnostic markers and heart mitochondrial lipid peroxidation products, calcium ions, and reactive oxygen species (ROS) were elevated and the heart mitochondrial antioxidants, tricarboxylic acid cycle, and respiratory chain enzymes were lessened in isoproterenol-induced myocardial infarcted rats. The heart mitochondrial damage was noted in the transmission electron microscopic study. The whole heart weight was increased and the subunits of nicotinamide adenine dinucleotide phosphate – oxidase 2 (Nox 2) genes such as cybb and p22-phox and cardiac hypertrophy genes such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β -myosin heavy chain (β-MHC), and actin alpha skeletal muscle-1(ACTA-1) were highly expressed in the rat's heart by reverse transcription-polymerase chain reaction study. The β-caryophyllene (20 mg/kg body weight) pre- and co-treatment orally, daily for 21 days reversed changes in ECG and lessened cardiac diagnostic markers, ROS, and whole heart weight and ameliorated mitochondrial damage and Nox/ANP/BNP/β-MHC/ACTA-1cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats. The observed effects might be due to the antioxidant, anti-mitochondrial damaging, and anti-cardiac hypertrophic mechanisms of β-caryophyllene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call