Abstract

Sepsis survivors present long-term cognitive deficits. The present study was to investigate the effect of early administration of high-dose vitamin C on cognitive function in septic rats and explore its possible cerebral protective mechanism. Rat sepsis models were established by cecal ligation and puncture (CLP). Ten days after surgery, the Morris water maze test was performed to evaluate the behavior and cognitive function. Histopathologic changes in the hippocampus were evaluated by nissl staining. The inflammatory cytokines, activities of antioxidant enzymes (superoxide dismutase or SOD) and oxidative products (malondialdehyde or MDA) in the serum and hippocampus were tested 24 h after surgery. The activity of matrix metalloproteinase-9 (MMP-9) and expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1(HO-1) in the hippocampus were measured 24 h after surgery. Compared with the sham group in the Morris water maze test, the escape latency of sepsis rats was significantly (P = 0.001) prolonged in the navigation test, whereas the frequency to cross the platform and the time spent in the target quadrant were significantly (P = 0.003) reduced. High-dose vitamin C significantly decreased the escape latency (P = 0.01), but increased the time spent in the target quadrant (P = 0.04) and the frequency to cross the platform (P = 0.19). In the CLP+ saline group, the pyramidal neurons were reduced and distributed sparsely and disorderly, the levels of inflammatory cytokines of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in the serum and hippocampus were significantly increased (P = 0.000), the blood brain barrier (BBB) permeability in the hippocampus was significantly (P = 0.000) increased, the activities of SOD in the serum and hippocampus were significantly (P = 0.000 and P = 0.03, respectively) diminished while the levels of MDA in the serum and hippocampus were significantly (P = 0.007) increased. High-dose vitamin C mitigated hippocampus histopathologic changes, reduced systemic inflammation and neuroinflammation, attenuated BBB disruption, inhibited oxidative stress in brain tissue, and up-regulated the expression of nuclear and total Nrf2 and HO-1. High-dose vitamin C significantly (P < 0.05) decreased the levels of tumor necrosis factor- (TNF)-α, interleukin-6 (IL-6), MDA in the serum and hippocampus, and the activity of MMP-9 in the hippocampus, but significantly (P < 0.05) increased the levels of SOD, the anti-inflammatory cytokine (IL-10) in the serum and hippocampus, and nuclear and total Nrf2, and HO-1 in the hippocampus. In conclusion, high-dose vitamin C can improve cognition impairment in septic rats, and the possible protective mechanism may be related to inhibition of inflammatory factors, alleviation of oxidative stress, and activation of the Nrf2/HO-1 pathway.

Highlights

  • Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to i­nfection[1]

  • Within 7 days after the establishment of the sepsis model, 9 rats died in the cecal ligation and puncture (CLP) + saline group with a survival rate of 47.1% (8/17), whereas 7 died in the CLP + vitamin C group resulting in a survival rate of 58.8% (10/17)

  • The neuroprotective effect of vitamin C was investigated in a well-established rat model of experimental sepsis

Read more

Summary

Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to i­nfection[1]. Vitamin C or ascorbic acid is a water-soluble vitamin that acts as an enzyme cofactor and plays an important role in regulating oxidative stress and inflammatory response in many important biological ­reactions[9]. It plays a vital role in neuronal differentiation, maturation, and myelin ­formation[10]. Sepsis is associated with an acute deficiency of vitamin C­ 13, and it has been proved that parenteral vitamin C alleviated organ injury and improved survival in septic ­rats[14] Despite these benefits of vitamin C in experimental sepsis, studies concerning the effects of vitamin C treatment on cognition impairment associated with sepsis are still limited. It was hypothesized that high-dose vitamin C played an important role in protecting sepsis-associated cognitive impairment, and this study was performed to investigate the effect of high-dose vitamin C on protecting sepsis-associated cognitive impairment in a rat sepsis model

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.