Abstract

A virulent strain of Erwinia amylovora, the causal agent of fire blight of Maloideae, and two of its non-virulent hrp mutants (a secretory and a regulatory mutant) were inoculated into apple cell suspensions either alone or in mixed inoculations. In single inoculations, death of 4- to 5-day-old apple cells occurred only when the concentration of the virulent strain of E. amylovora reached a threshold inoculum concentration of 104CFUml−1, while high concentrations of the hrp mutants were unable to kill apple cells. When mixed inoculated with the virulent parental strain, both hrp mutants protected apple cells from death caused by the virulent strain. The protective effect was associated with a decrease in the population level of the virulent strain and it was dependent on the non-virulent to virulent inoculum concentration suggesting a competition between the non-virulent mutant and the virulent strain. However, no differential protective ability between the two types of mutants could be noticed, contrary to previous results obtained with apple seedlings or apple flowers in which the regulatory mutant was significantly more effective than the secretory mutant. In conclusion, inoculation of apple cell cultures with E. amylovora does not seem to be a model suitable for investigating mechanisms leading to protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call