Abstract

The discovery and development of natural products with potent antioxidant, anti-inflammatory, and antiapoptotic properties have been one of the most interesting and promising approaches in the search for the treatment of many neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has served as an excellent in vitro model for the understanding of the molecular mechanisms of neuronal damage during ischemia and for the development of neuroprotective drugs against ischemia-induced brain injury. Recent studies suggested that pomegranate (Punica granatum L.) or its active constituents exert pharmacological actions such as antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, in this study we investigated the possible protective effects of different extracts of pomegranate against SGD-induced PC12 cells injury. Initially, the cells were pretreated with different concentrations of pulp hydroalcoholic extract (PHE), pulp aqueous extract (PAE) and pomegranate juice (PJ) for 2 h and then deprived of serum/glucose (SGD) for 6 and 12 h. SGD caused a significant reduction in cell viability (measured by the MTT assay) after 6 and 12 h, as compared with control cells (P < 0.001). Pretreatment with PHE, PAE, and PJ significantly and concentration-dependently increased cell viability following SGD insult for 6 and 12 h. A significant increase in DNA damage (measured by the comet assay) was seen in nuclei of cells following SGD for 12 h (P < 0.001). In control groups, no significant difference was seen in DNA damage between PHE, PAE, and PJ-pretreated and vehicle-pretreated PC12 cells (P > 0.05). PHE, PAE, and PJ pretreatment resulted in a significant decrease in DNA damage following ischemic insult (P < 0.001). This suppression of DNA damage by PHE, PAE and PJ was found to be concentration dependent. These data indicate that there is a cytoprotective property in PHE, PAE, and PJ under SGD condition in PC12 cells, suggesting that pomegranate has the potential to be used as a new therapeutic strategy for neurodegenerative disorders.

Highlights

  • In spite of remarkable promotion in the prevention and treatment of cerebral ischemia, stroke still remains one of the most important causes of death and cripple in the aged population [1]

  • The pulp hydroalcoholic extract (PHE), pulp aqueous extract (PAE), and pomegranate juice (PJ) were found to contain 353 ± 8, 224 ± 5, and 119 ± 6 mg/L total polyphenolics expressed as tannic acid equivalents (TAE, mg/g of TAE), respectively

  • To examine the probable toxic effects of pomegranate extracts, PC12 cells were incubated with high concentrations of PHE, PAE, and PJ (800 μg/mL) alone, and the viability was determined 6 and 12 h after treatment

Read more

Summary

Introduction

In spite of remarkable promotion in the prevention and treatment of cerebral ischemia, stroke still remains one of the most important causes of death and cripple in the aged population [1]. Designing the neuroprotective drugs and studying the cytoprotective effects of valid component could be done with an efficient in vitro model like serum/glucose deprivation (SGD) neuronal damage which could characterize the molecular mechanism of brain injury during cerebral ischemia [2, 3]. It is documented that consumption of pomegranate appears to correlate with treatment and preventing widespread range of diseases such as cancer [7, 8], diabetes [10], cardiovascular disease [11, 12], rheumatoid arthritis, and ulcerative colitis [9]. The neuroprotective effects of pomegranate have been shown in hypoxic-ischemic brain injuries [13, 14], Aβinduced oxidative stress and learning and memory deficits, and H2O2-induced oxidative stress in PC12 cells [15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call