Abstract

This paper explored the protective effect of total flavonoids of Rhododendron simsii(TFR) on focal cerebral ischemia-reperfusion injury(CIRI) in rats and its relationship with the store-operated calcium entry(SOCE) pathway regulated by stromal intera-ction molecule(STIM) and calcium release-activated calcium modulator(Orai).Rats were randomly assigned into the sham group, model(middle cerebral artery occlusion, MCAO) group, TFR(60 mg·kg~(-1)) group, TFR(60 mg·kg~(-1))+SOCE pathway inhibitor 2-aminoethoxydiphenyl borate(2-APB, 2.5 mg·kg~(-1)) group, and 2-APB(2.5 mg·kg~(-1)) group.The rats in the sham group and MCAO group were administrated with normal saline, and those in the TFR group and TFR+2-APB group were administrated with TFR(60 mg·kg~(-1)) by gavage for 14 days until sampling.The rats in the 2-APB group and TFR+2-APB group were intraperitoneally injected with 2-APB(2.5 mg·kg~(-1)) after operation.The levels of interleukin-1(IL-1), interleukin-6(IL-6), and tumor necrosis factor-alpha(TNF-α) in serum were measured by ELISA.The cerebral infarction and the pathological status of ischemic brain tissue were detected via TTC staining and HE staining, respectively.The protein and mRNA levels of STIM1, STIM2, Orai1, cysteinyl aspartate specific proteinase 3(caspase-3), and protein kinase B(PKB) in brain tissue were respectively determined by Western blot and RT-qPCR.The growth of brain neurons in each group was observed via immunofluorescence method.The results showed that compared with the MCAO group, TFR lowered the levels of IL-1, IL-6 and TNF-α in serum and the score of neurological function, ameliorated the pathological injury of brain tissue, and decreased the infarct size.Moreover, TFR up-regulated the mRNA and protein levels of STIM1, STIM2, Orai1, and PKB, down-regulated those of caspase-3 in brain tissue, and increased the double-labeled positive cells under fluorescence microscope.However, the above effects were significantly weakened by the addition of 2-APB, a SOCE inhibitor.The results suggested that TFR may play a protective role against focal cerebral ischemia-reperfusion injury by up-regulating the expression of SOCE-related signal molecules, promoting neurogenesis around the ischemic area, improving the survival state of neurons, and redu-cing the activity of inflammatory mediators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call