Abstract

ObjectiveTo investigate the protective role of Sijunzi decoction in neuromuscular junction (NMJ) and muscle cell mitochondria ultrastructure; as well as its effects on the amount of adenosine triphosphate (ATP) and the activities of mitochondrial respiratory chain complexes I, II, III, and IV in autoimmune myasthenia gravis rats. MethodsAn experimental autoimmune myasthenia gravis (EAMG) rat model was established by inoculating rats with acetylcholine receptors extracted from Torpedo. Rats were divided into three groups: model, prednisone, and Sijunzi decoction, and were fed physiological saline, prednisone, or Sijunzi decoction, respectively. NMJ and muscle cell mitochondria ultrastructure were observed by transmission electron microscope. The amount of ATP was assessed by high performance liquid chromatography. The activities of mitochondrial respiratory chain complexes I, II, III, and IV was determined using the Clark oxygen electrode method. ResultsIn the model group, there were sparse muscle fibers, with decreased mitochondria, and sparse, diffluent, or absent NMJ folds. After intervention with Sijunzi decoction, the above pathology changes were improved: muscle fiber structure was clear and complete; the mitochondria count was higher; and the NMJ structure was close to normal. Gastrocnemius muscle mitochondria in the model group produced significantly less ATP than those in the prednisone group (P<0.01). Conversely, the ATP of Sijunzi decoction group was significantly higher than prednisone group (P<0.01). The activities of gastrocnemius muscle mitochondrial respiratory chain complexes I, II, III, and IV in both the prednisone and Sijunzi decoction groups was dramatically higher compared with the model group (P<0.05). The activities of complexes I and III in the Sijunzi decoction group were significantly higher than those in the prednisone group (P< 0.05), but there was no obvious difference in complex II or IV activities between the two groups (P>0.05). ConclusionSijunzi decoction improved pathological changes in muscle mitochondria and NMJ, enhanced the amount of ATP in gastrocnemius muscle mitochondria, and improved the activities of respiratory chain complexes I, II, III, and IV (especially I and III) of the EAMG rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call