Abstract

To investigate the mechanism whereby sevoflurane (Sev) protects cardiomyocytes from hypoxia/reoxygenation (H/R) injury. The rat cardiomyocyte line H9C2 was exposed to hypoxia (1% oxygen) for 24h, followed by reoxygenation for 2h to construct a model of H/R injury. H9C2 was exposed to 2.4% Sev for 45min before creating a hypoxic environment to observe the effect of Sev. MTT was taken to assess the viability of each group of cells, flow cytometry to detect cell apoptosis, and qRT-PCR or western blot to detect the expression of iron metabolism-related proteins and apoptosis-related proteins in the cells. And the kit determined the levels of total Fe and Fe2+ as well as factors related to oxidative stress in the cells. Administration of Sev significantly increased the cell viability of the H/R group while decreasing the expression of apoptosis-related proteins (Bax, cleaved caspase-3). Ferroportin 1 and mitochondrial ferritin, which are associated with iron metabolism, were considerably up-regulated by Sev, while iron regulatory protein 1, divalent metal transporter 1, and transferrin receptor 1 were significantly down-regulated in H/R cells. Additionally, Sev substantially reduced the levels of total Fe and Fe2+, reactive oxygen species, malondialdehyde, and 4-hydroxynonenal in H/R cells. In conclusion, Sev relieves H/R-induced cardiomyocyte injury by regulating iron homeostasis and ferroptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call