Abstract

The present study elucidated the effects of indoleamines (serotonin, melatonin, and tryptophan) on oxidative damage of brain mitochondria and synaptosomes induced either by 6-hydroxydopamine (6-OHDA) or by iron plus ascorbate and on viability loss in dopamine-treated PC12 cells. Serotonin (1–100 μM), melatonin (100 μM), and antioxidant enzymes attenuated the effects of 6-OHDA, iron plus ascorbate, or 1-methyl-4-phenylpyridinium on mitochondrial swelling and membrane potential formation. Serotonin and melatonin decreased the attenuation of synaptosomal Ca 2+ uptake induced by either 6-OHDA alone or iron plus ascorbate. Serotonin and melatonin inhibited the production of reactive oxygen species, formation of malondialdehyde and carbonyls, and thiol oxidation in mitochondria and synaptosomes and decreased degradation of 2-deoxy- d-ribose. Unlike serotonin, melatonin did not reduce the iron plus ascorbate-induced thiol oxidation. Tryptophan decreased thiol oxidation and 2-deoxy- d-ribose degradation but did not inhibit the production of reactive oxygen species and formation of oxidation products in the brain tissues. Serotonin and melatonin attenuated the dopamine-induced viability loss, including apoptosis, in PC12 cells. The results suggest that serotonin may attenuate the oxidative damage of mitochondria and synaptosomes and the dopamine-induced viability loss in PC12 cells by a decomposing action on reactive oxygen species and inhibition of thiol oxidation and shows the effect comparable to melatonin. Serotonin may show a prominent protective effect on the iron-mediated neuronal damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call