Abstract

BackgroundCisplatin (CP) is commonly used in the treatment of different types of cancer but nephrotoxicity has been a major limiting factor. Therefore, the present study aimed to study the possible protective effect of rutin against nephrotoxicity induced by cisplatin in rats.MethodsForty male Wistar albino rats were randomly divided into 4 groups. Rats of group 1 control group intraperitoneal (i.p.) received 2.5 ml/kg, group 2 CP group received single dose 5 mg/kg cisplatin i.p. group 3 rutin group orally received 30 mg/kg rutin group 4 (CP plus rutin) received CP and rutin as in group 2 and 3. Kidneys were harvested for histopathology and for the study the gene expression of c-Jun N-terminal kinases (JNK), Mitogen-activated protein kinase 4 (MKK4), MKK7, P38 mitogen-activated protein kinases (P38), tumor necrosis factors alpha (TNF-α), TNF Receptor-Associated Factor 2 (TRAF2), and interleukin-1 alpha (IL-1-α).ResultsThe cisplatin single dose administration to rats induced nephrotoxicity associated with a significant increase in blood urea nitrogen (BUN) and serum creatinine and significantly increase Malondialdehyde (MDA) in kidney tissues by 230 ± 5.5 nmol/g compared to control group. The animal treated with cisplatin showed a significant increase in the expression levels of the IL-1α (260%), TRFA2 (491%), P38 (410%), MKK4 (263%), MKK7 (412%), JNK (680%) and TNF-α (300%) genes compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate, acute tubular injury with reactive atypia and apoptotic cells. Rutin administration attenuated cisplatin-induced alteration in gene expression and structural and functional changes in the kidney. Additionally, histopathological examination of kidney tissues confirmed gene expression data.ConclusionThe present study suggested that the anti-oxidant and anti-inflammatory effect of rutin may prevent CP-induced nephrotoxicity via decreasing the oxidative stress, inhibiting the interconnected ROS/JNK/TNF/P38 MAPK signaling pathways, and repairing the histopathological changes against cisplatin administration.

Highlights

  • Cisplatin (CP) is commonly used in the treatment of different types of cancer but nephrotoxicity has been a major limiting factor

  • Nephrotoxicity is the dose-limiting side effect of cisplatin [43] such as acute kidney injury was found in about 20–30% of patients receiving CP [44], Hypo-magnesemia in about 40–100% of patients [45], Fanconi-like syndrome, distal renal tubular acidosis, hypo-calcemia, renal salt wasting and hyper-uricemia [46]

  • Nephrotoxicity induced by CP is characterized by a reduction in renal function that leads to increasing in serum creatinine and blood urea levels [47]

Read more

Summary

Introduction

Cisplatin (CP) is commonly used in the treatment of different types of cancer but nephrotoxicity has been a major limiting factor. The accumulation of high concentrations of cisplatin in the kidneys caused nephrotoxicity [4]. This serious complication is contributed to limiting its clinical use. Cisplatin-induced nephrotoxicity through apoptosis and necrosis [6], vascular factors [7], and inflammation of the tubules [8]. The reactive oxygen species (ROS) and reactive nitrogen species (RNS) production [13] alter the structure and function of cellular membranes [14] In addition to their accumulation in kidney and lysosomes [15] explained the mechanisms for CPinduced acute nephropathy [13]. The free radical scavengers and the antioxidants agent can prevent cisplatin-induced nephrotoxicity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call