Abstract

As the hub of memory and space, hippocampus is very sensitive to a wide variety of injuries and is one of the earliest brain structures to develop neurodegenerative changes in AD. Previous research has showed a protective effect of potassium 2-(l-hydroxypentyl)-benzoate (PHPB) on cognitive deficits in animal models of AD. However, it is unclear whether this protective effect is associated with hippocampal alterations. The present study was conducted to evaluate the protective effect of PHPB on hippocampal neurodegenerative changes in middle-aged APP/PS1 mice. Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups. PHPB-treated APP/PS1 group received 30mg/kg PHPB by oral gavage once daily for 12weeks. Wild-type group and APP/PS1 group received the same volume of water alone. Twelve weeks later, mice (13-month-old) were tested for in vivo 1H-MRS examination and then sacrificed for subsequent biochemical and pathological examinations using transmission electron microscopy, Golgi staining, immunohistochemistry, and western blotting. We found that PHPB treatment significantly improved the micromorphology of hippocampal neurons and subcellular organelles, ameliorated synapse loss and presynaptic axonal dystrophy, increased hippocampal dendritic spine density and dendritic complexity, enhanced the expression of hippocampal synapse-associated proteins, and improved hippocampal metabolism in middle-aged APP/PS1 mice. Our study showed for the first time the protective effect of PHPB on hippocampal neurons, synapses, and dystrophic axons in APP/PS1 mice, which to some extent revealed the possible mechanism for its ability to improve cognition in animal models of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call