Abstract

The effects of nitric oxide (NO) in protecting maize (Zea mays) leaves against iron deficiency-induced oxidative stress were investigated. The increased contents of hydrogen peroxide (H(2)O(2)) and superoxide (O(2)(-)*) due to iron deficiency suggested oxidative stress. The increased contents of thiobarbituric acid-reacting substances (TBARS) and the decreased contents of protein-bound thiol (PT) and non-protein-bound thiol (NPT) indicated iron deficiency-induced oxidative damage on proteins and lipids. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, partially reversed iron deficiency-induced retardation of plant growth as well as chlorosis. Reduced contents of H(2)O(2), O(2)(-)*, TBARS and increased contents of PT and NPT also indicated that NO alleviated iron deficiency-induced oxidative damage. The activities of SOD and GR decreased sharply while the activities of CAT, POD and APX increased under SNP treatment. Our data suggest that NO can protect maize plants from iron deficiency-induced oxidative stress by reacting with ROS directly or by changing activities of ROS-scavenging enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.