Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is an important member of the nuclear receptor superfamily. Previous studies have shown the satisfactory anti-inflammatory role of PPARγ in experimental colitis models, mainly through negatively regulating several transcription factors such as nuclear factor-κB (NF-κB). Therefore, regulating PPARγ and PPARγ-related pathways has great promise for treating ulcerative colitis (UC). In the present study, our objective was to explore the potential effect of naringin on dextran sulfate sodium (DSS) induced UC in mice and its involved potential mechanism. We found that naringin significantly relieved DSS-induced disease activities index (DAI), colon length shortening, and colonic pathological damage. Exploration of the potential mechanisms demonstrated that naringin significantly activated DSS-induced PPARγ and subsequently suppressed NF-κB activation. PPARγ inhibitor GW9662 largely abrogated the roles of naringin in vitro. Moreover, DSS induced the activation of mitogen-activated protein kinase (MAPK) and (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome was inhibited by naringin. Tight junction (TJ) architecture in naringin groups was also maintained by regulating zonula occludens-1 (ZO-1) expression. These results suggested that naringin may be a potential natural agent for protecting mice from DSS-induced UC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.