Abstract

Alzheimer's disease is a neurodegenerative disorder. Central administration of colchicine is well known to cause cognitive impairment and oxidative damage, which simulates sporadic dementia of the Alzheimer type in humans. The present study has been designed to investigate the protective effects of naringin against the colchicine-induced cognitive impairment and oxidative damage in rats. Colchicine (15 microg/5 microL), administered intracerebroventricularly, resulted in poor memory retention in both the Morris water maze and elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant decrease in acetylcholinesterase activity. Naringin (40 and 80 mg/kg, p.o.) treatment was given daily for a period of 25 days beginning 4 days prior to colchicine administration. Chronic treatment with naringin caused significant improvement in the cognitive performance and attenuated oxidative damage, as evidenced by lowering of malondialdehyde level and nitrite concentration and restoration of superoxide dismutase, catalase, glutathione S-transferase, and reduced glutathione levels, and acetylcholinesterase activity compared to control. The present study highlights the therapeutic potential of naringin against colchicine-induced cognitive impairment and associated oxidative damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.