Abstract

BackgroundTo investigate the protective effect of low-dose radiation (LDR) on brain injury in mice induced by doxorubicin (DOX). MethodsSixty female BALB/C mice were randomly divided into the control (CTR) group, low-dose radiation (LDR) group, doxorubicin treatment (DOX) group and low-dose radiation before doxorubicin treatment (COM) group. After 72 h of exposure to 75 mGy, the mice were intraperitoneally injected with 7.5 mg/kg of doxorubicin and sacrificed 5 days later. Neuron-specific enolase (NSE), lactate dehydrogenase (LDH), adenosine triphosphate (ATP), neurotransmitters, inflammatory mediators, apoptosis- and oxidative stress-related mediators as well as mitochondrial dysfunction were examined. ResultsCompared to the DOX group, the concentrations of DA, 5-HT, EPI and GABA in the COM group were significantly decreased, and the number of TUNEL-positive cells was decreased. In addition, the expression of proapoptotic proteins was downregulated in the COM group compared to the DOX group. Low-dose radiation in advance reduced reactive oxygen species and activated the SOD antioxidant defense system as indicated by significantly reduced GSH expression, increased GSSG expression, increased GPx expression and activation of the Nrf2 redox pathway. After low-dose radiation, the expression levels of ATP5f1, NDUFV1 and CYC1 were close to normal, and the mitochondrial respiratory control rate (RCR) and activity of respiratory chain complex enzymes also tended to be normal. Low-dose radiation upregulated the expression levels of IL-2 and IL-4 but downregulated the expression levels of IL-10 and TGF-β. ConclusionLDR has a protective effect on brain injury in mice treated with DOX. The mechanism is related to LDR alleviating mitochondrial dysfunction and oxidative stress, which promotes the production of antioxidant damage proteins, thus exerting an adaptive protective effect on cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.