Abstract

The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6-/-) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6-/- slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.