Abstract
Heme oxygenase-1 (HO-1) is a stress response protein and its induction is associated with protection against oxidative stress. Cell survival during exposure to environmental stresses is associated with elevation of HO-1. Telomerase plays an important role in cell proliferation and immortalization. Our objective was to determine whether the adaptive cellular response to survive exposure to environmental stresses is dependent on expression of HO-1 and telomerase activity in hepatoma cell line (HepG2). Exposure of HepG2 to oxidants, H 2O 2 (100 μM), as well as HO-1 inducers, heme (10 μM) and stannic chloride (SnCl 2) (10 μM), resulted in an increased HO-1 mRNA, protein and total HO activity. On the other hand, HO activity was inhibited by addition of stannic mesoporphyrin (SnMP) (10 μM). These effects were brought about without altering endogenous HO-2 protein levels. Telomerase activity was not affected by oxidants, inducers of HO-1 or inhibitors of HO activity. Similarly, the catalytic subunit of telomerase enzyme human telomerase reverse transcriptase (hTERT), which is considered as the major regulator of telomerase activity, was not affected by oxidants, heme and H 2O 2, or downregulation of HO gene activity by SnMP. This study demonstrates, for the first time, that induction of HO-1 gene mediates protection against oxidants and increases cell survival by a mechanism independent of telomerase enzyme activity. Suppression of HO activity by SnMP decreased cell resistance to oxidant stressors without altering telomerase activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.