Abstract

Geraniol is a type of monoterpenoid with a rose scent and a slightly sweet flavor. It is found in the volatile oil of various plants, and has anti-inflammatory and anti-oxidant effects. The present study aimed to investigate the protective effect of geraniol in inhibiting the inflammatory response, oxidative stress and apoptosis in traumatic spinal cord injury (SCI), as well as to analyze the mechanism underlying its effect. Adult male Sprague-Dawley rats were induced to traumatic SCI through a surgical procedure and were defined as the SCI model group. SCI or normal rats were then administered 250 mg/kg/day geraniol for 4 weeks. The Basso, Beattie and Bresnahan (BBB) test and the spinal cord water content were used to analyze the effect of geraniol against traumatic SCI in rats. The inflammatory response, oxidative stress, and caspase-9 and -3 activities were measured using commercial ELISA kits. In addition, the associated mechanism was analyzed, using western blot analysis to determine the protein expression levels of nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). The results of the present study demonstrated that BBB scores were significantly increased and the spinal cord water content was significantly inhibited in SCI rats after 3 weeks of geraniol treatment. Furthermore, the inflammatory response, oxidative stress, and the caspase-9 and -3 activities were significantly suppressed upon treatment with geraniol. Finally, the mechanism of geraniol against traumatic SCI downregulated the NF-κB and p38 MAPK pathways in SCI rats. Therefore, the protective effect of geraniol is suggested to inhibit the inflammatory response, oxidative stress and apoptosis in traumatic SCI through the modulation of NF-κB and p38 MAPK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call