Abstract

Methylglyoxal-induced oxidative stress and cytotoxicity are the main factors causing neuronal death-related, diabetically induced memory impairment. Antioxidant and anti-apoptotic therapy are potential intervention strategies. In this study, 25 flavonoids with different substructures were assayed for protecting PC-12 cells from methylglyoxal-induced damage. A structure-activity relationship (SAR) analysis indicated that the absence of the double bond at C-2 and C-3, substitutions of the gallate group at the 3 position, the pyrogallol group at the B-ring, and the R configuration of the 3 position enhanced the protection of flavan-3-ols, and a hydroxyl substitution at the 4' and meta-positions were important for the protection of flavonol. These SARs were further confirmed by molecular docking using the active site of the Keap1-Nrf2 complex as the receptor. The mechanistic study demonstrated that EGCG with the lowest EC50 protected the PC-12 cells from methylglyoxal-induced damage by reducing oxidative stress via the Nrf2/Keap1/HO-1 and Bcl-2/Bax signaling pathways. These results suggested that flavan-3-ols might be a potential dietary supplement for protection against diabetic encephalopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.