Abstract

Electronic-cigarette smoke (eCS) has been shown to cause a degree of oxidative stress and inflammatory damage in lung tissue. The aim of this study was to evaluate the repair mechanism of Eurotium cristatum fermented loose dark tea (ECT) and Eurotium cristatum particle metabolites (ECP) sifted from ECT after eCS-induced injury in mice. Sixty C57BL/6 mice were randomly divided into a blank control group, an eCS model group, an eCS + 600 mg/kg ECP treatment group, an eCS + 600 mg/kg ECT treatment group, an eCS + 600 mg/kg ECP prevention group, and an eCS + 600 mg/kg ECT prevention group. The results show that ECP and ECT significantly reduced the eCS-induced oxidative stress and inflammation and improved histopathological changes in the lungs in mice with eCS-induced liver injury. Western blot analysis further revealed that ECP and ECT significantly inhibited the eCS-induced upregulation of the phosphorylation levels of the extracellular Regulated protein Kinases (ERK), c-Jun N-terminal kinase (JNK) and p38mitogen-activated protein kinases (p38MAPK) proteins, and significantly increased the eCS-induced downregulation of the expression levels of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) proteins. Conclusively, these findings show that ECP and ECT have a significant repairing effect on the damage caused by eCS exposure through the MAPK and PXR/AhR signaling pathways; ECT has a better effect on preventing eCS-induced injury and is suitable as a daily healthcare drink; ECP has a better therapeutic effect after eCS-induced injury, and might be a potential therapeutic candidate for the treatment of eCS-induced injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.