Abstract

Ischemia/hypoxia induces de novo expression of the sulfonylurea receptor 1-regulated NC(Ca-ATP) channel. In rodent models of ischemic stroke, early postevent administration of the sulfonylurea, glibenclamide, is highly effective in reducing edema, mortality, and lesion volume, and in patients with diabetes presenting with ischemic stroke, pre-event plus postevent use of sulfonylureas is associated with better neurological outcome. However, the therapeutic window for treatment with glibenclamide has not been studied. We examined the effect of low-dose (nonhypoglycemogenic) glibenclamide in 3 rat models of ischemic stroke, all involving proximal middle cerebral artery occlusion (MCAo): a thromboembolic model, a permanent suture occlusion model, and a temporary suture occlusion model with reperfusion (105 minutes occlusion, 2-day reperfusion). Treatment was started at various times up to 6 hours post-MCAo. Lesion volumes were measured 48 hours post-MCAo using 2,3,5-triphenyltetrazolium chloride. Glibenclamide reduced total lesion volume by 53% in the thromboembolic MCAo model at 6 hours, reduced corrected cortical lesion volume by 51% in the permanent MCAo model at 4 hours, and reduced corrected cortical lesion volume by 41% in the temporary MCAo model at 5.75 hours (P<0.05 for all 3). Analysis of pooled data from the permanent MCAo and temporary MCAo series indicated a sigmoidal relationship between hemispheric swelling and corrected cortical lesion volume with the half-maximum cortical lesion volume being observed with 10% hemispheric swelling. Low-dose glibenclamide has a strong beneficial effect on lesion volume and has a highly favorable therapeutic window in several models of ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call