Abstract

The present study evaluates the protective properties of boric acid (BA) against the toxic effects induced by ochratoxin A (OTA) in human embryonic kidney cells (HEK293). The focus is on various parameters such as cytotoxicity, genotoxicity, oxidative stress, and apoptosis. OTA is a known mycotoxin that has harmful effects on the liver, kidneys, brain, and nervous system. BA, on the other hand, a boron-based compound, is known for its potential as a vital micronutrient with important cellular functions. The results show that BA administration not only increases cell viability but also mitigates the cytotoxic effects of OTA. This is evidenced by a reduction in the release of lactate dehydrogenase (LDH), indicating less damage to cell membranes. In addition, BA shows efficacy in reducing genotoxic effects, as the frequency of micronucleus (MN) and chromosomal aberrations (CA) decreases significantly, suggesting a protective role against DNA damage. In addition, the study shows that treatment with BA leads to a decrease in oxidative stress markers, highlighting its potential as a therapeutic intervention against the deleterious effects of OTA. These results emphasize the need for further research into the protective mechanisms of boron, particularly BA, in combating cell damage caused by OTA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call