Abstract

Eurasian avian-like (EA) H1N1 swine influenza viruses (SIVs) are currently the most prevalent SIVs in Chinese swine populations, but recent human-like H3N2 SIV subtypes have also been frequently isolated. Hence, there is an urgent need to develop an effective vaccine against both EA H1N1 and recent human-like H3N2 infections. In this study, we utilized the baculovirus expression system to produce virus-like particles (VLPs) containing hemagglutinin protein (HA) and matrix protein (M1) based on A/Swine/Guangdong/YJ4/2014 (H1N1) and A/swine/Guangdong/L22/2010 (H3N2). An immunological experiment showed that in a mouse model, bivalent VLP vaccines against H1N1 and H3N2 can induce stronger humoral and cellular immune responses than whole influenza virus vaccines. Compared with monovalent inactivated vaccines that cannot offer protection against different SIV subtypes, monovalent H1N1 or H3N2 VLP vaccines can provide partial protection against lethal challenge by viruses of different subtypes. Meanwhile, bivalent VLP vaccines against H1N1 and H3N2 can provide full protection against lethal doses of homologous and heterologous viruses belonging to the EA H1N1 or recent human-like H3N2 lineage. These results suggest a promising approach to the development of vaccines against SIVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call