Abstract

BackgroundAccelerated atherosclerosis in patients suffering from diabetes represents a major cause of morbidity and mortality. The aim of present study was to investigate the protective effects conferred by atorvastatin (AVT) meditated by the HMGCR gene in diabetic rats with atherosclerosis. MethodsSerum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), fasting blood glucose (FBG) and serum insulin (INS) were all determined by means of in vivo experiments. Following the establishment of the diabetic model of atherosclerosis, the expressions of HMGCR, low density lipoprotein receptor (LDLR), fatty acid synthase (FASN) were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis in the vitro experiments. Flow cytometry was adopted in order to detect cell cycle and apoptosis. ResultsThe in vivo experiments results indicated that FBG and INS among the diabetic arteriosclerosis rats exhibited markedly higher levels; after injected with AVT and HMGCR, decreased contents of TC, TG, LDL-C and VLDL-C, while increased contents of HDL-C as well as an increased positive rate of HMGCR protein expression were observed. In vitro experiment, the mRNA and protein expression of LDLR were increased and FASN were decreased in cells transfected with HMGCR and AVT; with a greater number of cells arrested at the S phase and less in the G0/G1 phase, as well as data indicating the rate of apoptosis was inhibited after HMGCR and AVT transfection processes. ConclusionThe key findings of the present study suggested that the protective effect conferred by AVT in diabetic rats with atherosclerosis was associated with the overexpression of the HMGCR gene, thus presenting a novel target for atherosclerosis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.