Abstract

Purpose: To investigate the protective effect of Acorus tatarinowii extract (ATE) against Alzheimer's disease in 3xTg-AD mice.
 Method: The cognitive function of 3xTg-AD mice was assessed using Morris water maze test. The levels of the amyloid beta deposits and NeuN in the hippocampus were evaluated by immunohistochemical assay while brain neurotrophic derived factor (BDNF) and tyrosine kinase B (TrkB) expressions were determined by western blot analysis.
 Results: ATE treatment significantly ameliorated learning and memory deficits in AD mice, as shown by increased time spent in the target zone during probe tests. The escape latency in animals treated with 600 mg/kg ATE (24.8 ± 1.3 s) was significantly increased relative to ontreated 3xTg-AD mice (8.5 ± 1.0 s, p < 0.01). In addition, ATE significantly decreased Aβ deposits, increased NeuN-positive cells, and upregulated the expression of BDNF (1.9 ± 0.4, p < 0.05) and TrkB (1.9 ± 0.2, p < 0.05) in 3xTg AD mice.
 Conclusion: These results suggest that ATE treatment may be a useful strategy for managing memory impairment induced by several neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.