Abstract
Nitric oxide (NO) plays important roles in a variety of pathophysiological processes. It has been reported that inducible NO synthase (iNOS) is upregulated in the glomeruli of patients with glomerulonephritis, although there has been no direct evidence that NO generated by iNOS contributes to the progression of glomerulonephritis. ONO-1714, a novel cyclic amidine analog, is a selective inhibitor of iNOS. To elucidate the role of iNOS in the pathogenesis of experimental crescentic glomerulonephritis, we examined the effect of ONO-1714 given to rats with nephrotoxic serum (NTS) nephritis. We induced NTS nephritis in Wistar-Kyoto (WKY) rats. These rats were given ONO-1714 or physiological saline intraperitoneally for 14 days using an osmotic pump after intraperitoneal injection with NTS. Glomerular expression of iNOS and urinary excretion of NO metabolites (nitrite/nitrate) were increased in rats after injection of NTS. As compared with the control group, ONO-1714 significantly reduced proteinuria, crescent formation, glomerular infiltration of macrophages and urinary excretion of nitrite/nitrate. The present results suggest that NO radicals generated by iNOS contribute to the progression of experimental crescentic glomerulonephritis in WKY rats. The selective iNOS inhibitor ONO-1714 may be beneficial for the treatment of crescentic glomerulonephritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.