Abstract

BackgroundHydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Beyond the threshold level, it damages cells and causes several human disorders, including cancer.MethodsEffect of isolated 3-O-methyl quercetin and kaempferol on H2O2 induced cytotoxicity, ROS formation, plasma membrane damage, loss of mitochondrial membrane potential, DNA damage was evaluated in normal liver and lung cells. The RT-PCR analysis used to determine Nrf 2 gene expression. Calorimetric ELISA was used to determine Nrf2 and p-38 levels. Expression of SOD and catalase was analyzed by Western blot analysis.ResultsThe present study isolated 3-O-methyl quercetin and kaempferol from the stem bark. They protected normal lung and liver cells from H2O2 induced cytotoxicity, ROS formation, membrane damage and DNA damage. Pre-treatment with 3-O-methyl quercetin and kaempferol caused translocation of Nrf2 from cytosol to nucleus. It also increased expression of p-p38, Nrf2, SOD and catalase in H2O2 treated lung and liver cells.ConclusionThe flavonoids isolated from S. anacardium significantly reduced H2O2 induced stress and increased expression of Nrf2, catalase and superoxide dismutase-2 indicating cytoprotective nature of 3-O-methylquercetin and kaempferol.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-016-1354-z) contains supplementary material, which is available to authorized users.

Highlights

  • Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species

  • Our previous study demonstrated the antioxidant activity of methanolic stem bark extracts of S. anacardium [10]

  • The analysis of the results indicates that pre-treatment with 3-O-methyl quercetin decreased the release of Lactate dehydrogenase (LDH) by 56.1, 49.2, 27.2, 13.3, and 13 % at 10, 25, 50, 100 and 250 μg/ml, respectively, whereas kaempferol by 52.3, 46.1, 25.0, 12.1 and 12.2 % respectively, in lung cells compared to Hydrogen peroxide (H2O2) treated control (Fig. 2e)

Read more

Summary

Introduction

Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Hydrogen peroxide is a physiological constituent of living cells. It is generated by inflammatory and vascular cells and is reported to induce oxidative stress leading to vascular disease and endothelial cell dysfunction. H2O2 is continuously produced via diverse cellular pathways and serves as a precursor of a wide range of reactive oxygen species. H2O2 is relatively unreactive oxygen species and causes deleterious effects by inducing lipid peroxidation and DNA damage. H2O2 is believed to transduce signalling at intracellular steady-state concentration below 1 μM and above cause oxidative stress induced growth arrest and cell death [1]. Schwingel et al [3] highlighted the therapeutic potentials of methylquercetin and kaempferol

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.