Abstract

Carbon bonded carbon fibre composites (CBCF) were modified by direct reaction with molten silicon in order to obtain a silicon carbide layer on the composite surface. Subsequently, the Si-infiltrated CBCF material was coated with a silica-based glass containing yttria and alumina by means of a slurry-dipping technique. On heat treatment the glass yielded a glass-ceramic layer thus giving a multi-layered oxidation and erosion protection system. The microstructural characterisation of the coating was conducted by standard microscopy techniques and by X-ray diffraction. The controlled crystallization of the glass-produced cristobalite, yttrium silicate (Y 2Si 2O 7, keiviite, β-form) and mullite as main crystalline phases. These are excellent ceramic materials for oxidation and erosion protection of SiC-coated carbon-based composites since their coefficients of thermal expansion (CTE) closely match that of SiC. The possibility of healing (closure) of micro cracks by a thermal treatment at 1375 °C, thus exploiting the viscous flow of the residual glass in the glass-ceramic, was explored in order to extend the service life of the protection system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call