Abstract

The loss of structural integrity of fiber-reinforced polymer composites (FRPs) when set on fire poses a great threat for the safety of occupants and property, which can be alleviated by introducing fire protective methods. The fire-protective polymeric coating has shown great potential in reducing fire hazards of FRPs and preventing loss of post-fire mechanical properties, but it has seldom been proven to have a protective effect under simultaneous loading and fire damage on a coupon level using a lab scale instrument. In this work, a machine which can be mounted on the widely acknowledged cone calorimeter (CCT) was designed and fabricated with details provided. Two types of laminate were prepared to be subjected to a static axial or off-axial load while set ignited and burned. Results showed that the protective polymeric coating delayed coated coupons for mechanical failure time by more than 190% compared to coupons without any coating. With this instrument being universally adaptable to various types of CCT, it provided meaningful information to the materials design process of fire-safe FRPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.