Abstract
Abstract Blast and fire-resistant barrier walls are often required on offshore platforms to protect from accidental events. A wall structure designed for a probabilistic explosion event typically relies on inelastic response and plastic deformation to maintain a lightweight, efficient design. Design guides for such structures do not explicitly address how to account for the effects of interaction of blast and fire loading on structural performance and design acceptance criteria. If a wall assembly is required to provide rated fire and gas protection after an explosion event, it is generally assumed that structural integrity is maintained due to temperature increase limits (140°C) from the H-60/120 rated fire protection on the wall. This paper investigates the validity of this assumption for a typical offshore barrier wall designed to undergo permanent deformation during an initial blast event. The study was performed utilizing non-linear dynamic finite element analysis (FEA). FEA allows for design iteration, structural assessment, and validation against extreme load scenarios when testing of full-scale assembly may not be feasible. A typical wall structure was first analyzed for blast loading by non-linear dynamic structural analysis. Thermal loading from a subsequent hydrocarbon fire was then applied to observe the structural response in the post-blast damaged condition. Based on the rated temperature range, the resulting thermal expansion in the wall panels induces large stresses at the interface between wall panels and supporting steel. Non-linear FEA confirmed that yielding occurs which may increase existing plastic strains beyond design limits at locations of high stress concentration. Therefore, it is prudent to consider thermal performance in the design process, especially regarding connections and penetrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.