Abstract

BackgroundThe investigation of the environmental contribution for developmental neurotoxicity is very critical. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations towards identifying either environmental toxicants that cause or drugs that protect from neurotoxicity and may help in treatment of neurodevelopmental disorders.ObjectiveTo study both the protective and therapeutic effects of N-acetyl cysteine on brain intoxication induced by propionic acid (PPA) in rats.MethodsTwenty-eight young male Western Albino rats were enrolled in the present study. They were grouped into four equal groups, each of 7 animals. Group 1: control group, orally received only phosphate buffered saline; Group 2: PPA-treated group, received a neurotoxic dose of of PPA of 250 mg/kg body weight/day for 3 days; Group 3: protective group, received a dose of 50 mg/kg body weight/day N-acetyl-cysteine for one week followed by a similar dose of PPA for 3 days; and Group 4: therapeutic group, treated with the same dose of N-acetyl cysteine after being treated with the toxic dose of PPA. Serotonin, interferon gamma (IFN-γ), and glutathione-s-transferase activity, together with Comet DNA were assayed in the brain tissue of rats in all different groups.ResultsThe obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of serotonin (5HT), increase in IFN-γ and inhibition of glutathione-s-transferase activity as three biomarkers of brain dysfunction. Additionally Comet DNA assay showed remarkably higher tail length, tail DNA % damage and tail moment. N-acetyl-cysteine was effective in counteracting the neurotoxic effects of PPA.ConclusionsThe low dose and the short duration of N-acetyl-cysteine treatment tested in the present study showed much more protective rather than therapeutic effects on PPA-induced neurotoxicity in rats, as there was a remarkable amelioration in the impaired biochemical parameters representing neurochemical, inflammatory, detoxification and DNA damage processes.

Highlights

  • The impact of environmental chemicals on children's neurodevelopment is sometimes treated as an unimportant issue because of the insignificant clinical impairments

  • The obtained data showed that propionic acid (PPA) caused multiple signs of brain toxicity as measured by depletion of serotonin (5HT), increase in IFN-γ and inhibition of glutathione-s-transferase activity as three biomarkers of brain dysfunction

  • The low dose and the short duration of N-acetyl-cysteine treatment tested in the present study showed much more protective rather than therapeutic effects on PPA-induced neurotoxicity in rats, as there was a remarkable amelioration in the impaired biochemical parameters representing neurochemical, inflammatory, detoxification and DNA damage processes

Read more

Summary

Methods

Twenty-eight young male Western Albino rats were enrolled in the present study. They were grouped into four equal groups, each of 7 animals. Group 1: control group, orally received only phosphate buffered saline; Group 2: PPA-treated group, received a neurotoxic dose of of PPA of 250 mg/kg body weight/day for 3 days; Group 3: protective group, received a dose of 50 mg/kg body weight/day N-acetyl-cysteine for one week followed by a similar dose of PPA for 3 days; and Group 4: therapeutic group, treated with the same dose of N-acetyl cysteine after being treated with the toxic dose of PPA. Interferon gamma (IFN-γ), and glutathione-s-transferase activity, together with Comet DNA were assayed in the brain tissue of rats in all different groups

Results
Conclusions
Introduction
Materials and methods
Results and discussion
Bellinger DCA
18. Fahey RC
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call