Abstract

Ethnopharmacological relevanceVarious medicinal plants have protective properties against the toxicities of the venom of cobra snake (Naja species). They may be used as local first aid for the treatment of snakebite victims, and can significantly inhibit lethality, cardio-, neuro-, nephro- and myotoxicity, hemorrhage, and respiratory paralysis induced by the cobra snake venom. The plants or their extracts may also complement the benefits of conventional anti-serum treatment. Aim of the review: This review provides information on the protective, anti-venom, properties of medicinal plants against snakebites from cobras. In addition, it identifies knowledge gaps and suggests further research opportunities. MethodsThe literature was searched using databases including Google Scholar, PubMed, ScienceDirect, Scopus and Web of Science. The searches were limited to peer-reviewed journals written in English with the exception of some books and a few articles in foreign languages. ResultsThe plants possess neutralization properties against different cobra venom enzymes, such as hyaluronidase, acetylcholinesterase, phospholipase A2 and plasma proteases. Different active constituents that show promising activity against the effects of cobra venom include lupeol acetate, β-sitosterol, stigmasterol, rediocides A and G, quercertin, aristolochic acid, and curcumin, as well as the broad chemical groups of tannins, glycoproteins, and flavones. The medicinal plants can increase snakebite victim survival time, decrease the severity of toxic signs, enhance diaphragm muscle contraction, block antibody attachment to venom, and inhibit protein destruction. In particular, the cardiovascular system is protected, with inhibition of blood pressure decline and depressed atrial contractility and rate, and prevention of damage to heart and vessels. The designs of experimental studies that show benefits, or otherwise, of use of medicinal plants have some limitations: deficiency in identification and isolation of active constituents responsible for therapeutic activity; lack of comparison with reference drugs; and little investigation of the mechanism of anti-venom activity. ConclusionDespite some current deficiencies in experimental or clinical analysis, medicinal plants with anti-venom characteristics are effective and so are candidates for future therapeutic agents. We suggest that emphasis on identification and testing of active ingredients in research in the future will assist better understanding of their anti-venom activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call