Abstract

Continued circulation of the whooping cough pathogen, even in countries with high vaccine coverage, can be related to persistence of Bordetella pertussis biofilms in the respiratory tract. The films differ from planktonic cells by increased resistance to the host immune system and antibacterial drugs. The available acellular pertussis vaccines (aPV) containing antigens isolated from planktonic cultures of B. pertussis protect from severe forms of whooping cough, but do not effectively influence circulation of virulent strains in the subclinical forms of the disease and asymptomatic carriage. It is promising to create new generation aPV based on antigens isolated from biofilm cultures of B. pertussis capable of more effectively controlling the entire infectious cycle of whooping cough, including colonization, persistence, and transmission of the pathogen. From antigenic complexes isolated from the culture medium of biofilm and planktonic cultures of the strain B. pertussis No. 317 (serotype 1.2.3), experimental aPV were made: aPV-B and aPV-P, respectively. In intracerebral infection of mice with a virulent strain of B. pertussis, aPV-B demonstrated 2.5-fold higher protective activity than aPV-P and also more effectively reduced colonization of the lungs by B. pertussis cells in mice after intranasal infection with a virulent strain. Both vaccine preparations were safe and did not cause death in mice after administration of histamine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.