Abstract

The effect of CLA on paraoxonase 1 (PON1), one of the antioxidant proteins associated with HDL, was investigated for its protective action against oxidative inactivation as well as its stabilization activity. When cis-9 (c9),trans-11 (t11)-CLA and t10,c12-CLA were examined for their protective activity against ascorbate/Cu(2+)-induced inactivation of PON1 in the presence of Ca2+, two CLA isomers exhibited a remarkable protection (Emax, 71-74%) in a concentration-dependent manner (50% effective concentration, 3-4 microM), characterized by a saturation pattern. Such a protective action was also reproduced with oleic acid, but not linoleic acid. Rather, linoleic acid antagonized the protective action of CLA isomers in a noncompetitive fashion. Additionally, the two CLA isomers also protected PON1 from oxidative inactivation by H2O2 or cumene hydroperoxide. The concentration-dependent protective action of CLA against various oxidative inactivation systems suggests that the protective action of CLA isomers may be mediated through their selective binding to a specific binding site in a PON1 molecule. Separately, the inactivation of PON1 by p-hydroxymercuribenzoate (PHMB), a modifier of the cysteine residue, was also prevented by CLA isomers, suggesting the possible existence of the cysteine residue in the binding site of CLA. The c9,t11-CLA isomer seems to be somewhat more effective than t10,c12-CLA in protecting against the inactivation of PON1 by either peroxides or PHMB, in contrast to the similar efficacy of these two CLA isomers in preventing ascorbate/Cu(2+)-induced inactivation of PON1. Separately, CLA isomers successfully stabilized PON1, but not linoleic acid. These data suggest that the two CLA isomers may play a beneficial role in protecting PON1 from oxidative inactivation as well as in its stabilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.