Abstract
The use of the anticancer drug doxorubicin (Dox) is limited due to its cardiotoxic effect. Using the method of automatic solid-phase peptide synthesis, we obtained a synthetic agonist of galanin receptors GalR1-3 [RAla14, His15]-galanine (2-15) (G), exhibiting cardioprotective properties. It was purified by high performance liquid chromatography (HPLC). The homogeneity and structure of the peptide was confirmed by HPLC, 1H-NMR spectroscopy and mass spectroscopy. The purpose of this study was to study the effect of G on the metabolism and cardiac function of rats with chronic heart failure (CHF) caused by Dox. Experiments were performed using male Wistar rats weighing 280-300 g. The control group of animals (C) was intraperitoneally treated with saline for 8 weeks; the doxorubicin group (D) of rats was intraperitoneally treated with Doх; the group of Doх + peptide G (D+G) received intraperitoneally injections of Doх and subcutaneously injections of peptide G; the peptide G group (G) was subcutaneously treated with G. At the beginning and at the end of the study, the concentration of thiobarbituric acid reactive substances (TBARS) and the activity of creatine kinase-MB (CK-MB) were determined in blood plasma; the animals were weighed, and cardiac function was assessed using echocardiography. At the end of the experiments, the hearts were used for determination of metabolites and assessment of oxidative phosphorylation in mitochondria. After 8-week treatment, animals of group D were characterized by severe heart failure, the lack of weight gain and an increase in plasma TBARS concentration and CK-MB activity. These disorders were accompanied by a decrease in the content of myocardial high-energy phosphates, a reduction inmitochondrial respiratory parameters, accumulation of lactate and glucose in the heart, and disturbances in the metabolism of alanine and glutamic and aspartic acids. Coadministration of G and Dox prevented the increase in plasma CK-MB activity and significantly reduced the plasma TBARS concentration. At the end of the experiments animals of group D+G had higher myocardial energy state and the respiratory control index of mitochondria than animals of group D, there was a decrease in anaerobic glycolysis and no changes in the amino acid content compared to the control. The peptide G significantly improved the parameters of cardiac function and caused weight gain in animals of group D+G in comparison with these parameters in group D. The obtained results demonstrate the ability of a novel agonist of galanin receptors GalR1-3 to attenuate Dox-indiced cardiotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.